:
نویز یك صوت ناخواسته می باشد. كه هر یك دارای یك سطح از قدرت می باشد. نویزهای با قدرت بالا آزاردهنده هستند و می توانند مضراتی برای سلامتی انسان، سیستم های مخابراتی و دیگر سیستم ها داشته باشند. با توجه به خصوصیات نویز مانند فركانس و خواص آماری آن مانند تابع خودهمبستگی، روش مناسبی برای آن انتخاب می شود.
روش كلاسیك حذف نویز، روش غیرفعال است كه در آن از عایق بندی صوتی استفاده می شود كه برای دسته خاصی از نویزها، آنها كه دارای فركانس بالا می باشند مورد استفاده قرار می گیرد. در روش الكترونیكی كه همان روش فعال نامیده می شود از كنترل كننده فعال نویز استفاده می شود كه این روش نیز برای نویزهایی با فركانس پائین مناسب است. در این كنترل كننده، هدف ایجاد نویزی برابر با نویز اصلی و فاز مخالف است تا بتواند با تركیب با نویز اولیه آنرا حذف نماید و ایجاد سكوت كند. برای این كار به یك بلندگو كه سیگنال كنترلی یا حذف كننده را پخش می كند و یك سنسور برای اندازه گیری خطا احتیاج میباشد. در روش كلاسیك استفاده از كنترل نویز فعال، از فیلترهای تطبیقی با ساختارهایی مانند FIR, IIR, Ladder,… و از الگوریتم هایی مانند LMS, n‐LMS, RLS, FX‐LMS,… برای ساختن یك كنترل كننده استفاده می شود. در این روش ها الگوریتم با استفاده از معیارهایی مانند بیشترین شیب نزولی ضرایب فیلترها را تعیین می كند.
در روش هوشمند برای ساختن كنترل كننده به جای فیلتر از شبكه های عصبی استفاده می كنیم و به جای الگوریتم های LMS,… از الگوریتم هایی مانند backpropagation, filtered‐X, backpropagation,… استفاده می كنیم. شبكه های عصبی به صورت موفقیت آمیزی به منظور تقریب، شناسایی و كنترل بر روی سیستم های دینامیك اعمال می شوند. شبكه های عصبی به خوبی می توانند در ساختارهای كنترلی نظیر Model predictive control , Adaptive inverse control , Nonlinear model control, Model reference control ایفای نقش كنند. زمانی كه از شبكه های عصبی استفاده می شود باید ابتدا وزن ها، بایاس ها، تعداد نرون ها، لایه ها، تعداد ورودی و خروجی مشخص گردد كه این وزن ها و بایاس ها توسط الگوریتم های آموزشی و داده های آموزشی در مرحله آموزش تعیین می شوند. در مرحله آموزش معمولاً داده های ورودی و خروجی مطلوب برای شبكه عصبی مشخص می شود. ساختار شبكه عصبی كه چگونگی اتصال نرون ها در یك لایه و از لایه ای به لایه دیگر را نشان می دهد بر اساس میزان سرعت و پیچیدگی و حجم شبكه بوجود آمده تعیین می شود. ساختارهای متعارف شبكه عصبی ساختار feedforward, recurrent,… می باشند. بعد از زمان آموزش و برای داده های بعدی كه به شبكه های عصبی وارد می شود این خود شبكه است كه برای خروجی تصمیم می گیرد. به همین جهت است كه شبكه های عصبی جزو روش های هوشمند به شمار می آیند. برای ایجاد یك كنترل كننده فعال نویز با شبكه عصبی باید از ساختار Model reference control استفاده نمود. در این ساختار دو شبكه عصبی وجود دارد. (الف) شبكه عصبی مدل پلنت (ب) شبكه عصبی كنترل كننده.
شبكه مدل پلنت برای در نظر گرفتن تاثیر مسیر ثانویه است و قبل از آموزش شبكه كنترل كننده باید آموزش ببیند. از طریق روش شناسایی سیستم، پلنت را مدل می كنیم. كنترل كننده را به گونه ای آموزش می دهیم كه بتواند سیگنال آنتی نویزی تولید كند كه از پلنت عبور كرده و در عین حال رفتار مدل مرجع را دنبال كند. این شبكه عصبی كنترل كننده با توجه به مسیری كه قرار است نویز طی كند یك سیگنال كنترلی تولید می كند كه این سیگنال پس از طی مسیر ثانویه با نویز اصلی تركیب شده و باید بتواند تا حدودی آن را خنثی نماید. از الگوریتم filtered‐x backpropagation برای آموزش كنترل كننده استفاده می كنیم. میزان موفقیت آمیز بودن حذف نویز توسط سنسور خطا اندازه گیری می شود. شبیه سازی ها را در حالت های مختلف و بر روی یك سیستم داكت با دو ورودی نویز متفاوت انجام می دهیم. همچنین سیستم را در دو حالت خطی و غیرخطی نیز بررسی خواهیم نمود.
طبیعت واحدمند و توزیع شده اینترنت به افزایش محبوبیت بیش از حد آن کمک می کند که منجر به رشد نمایی در حجم ترافیک و تقاضای بی سابقه برای ظرفیت شبکه هسته گردیده است.
از اینرو فراهم کنندگان شبکه با نیاز فراهم کردن یک شبکه زیرساخت جدید که بتواند رشد ترافیک را در شبکه هسته فراهم کند مواجه شده اند. پیشرفت در خروجی (throughput) فیبر و تکنولوژی های انتقال نوری اپراتورها را قادر کرده است تا ظرفیتهای بسیار بالایی را بکار گیرند در حالیکه پیشرفت در تکنولوژیهای سوییچ / روترپاکتی نسبتاً آهسته تر بوده است از اینرو هنوز قادر به رقابت با سرعت در لینکهای انتقال نیستند.
در حالی که کریرها تجهیزات DWDM و فیبر را به کار می برند تا ظرفیت را افزایش دهند، تکنولوژی های سوییچینگ پاکتی با سرعت بالا (ترابیت) و ظرفیت زیاد مورد نیاز هستند تا ترافیک را در لینکهای با سرعت بالا جمع کنند.
تکنولوژی های سوییچینگ سرعت بالا که در اینجا بررسی می شوند برای سوییچ های ATM و روترهای IP مشترک هستند. اختلاف بین سوییچ های ATM و روترهای IP در کارتهای خط می باشد بنابراین هر دو سیستم می توانند با استفاده از یک سوییچ فابریک مشترک با کارتهای خط مناسب خود ساخته شوند.
چندین معیار طراحی باید هنگام طراحی یک سوییچ پاکتی در نظر گرفته شود. اولاً سوییچ باید تأخیر کم و احتمال cell loss کوچک و ماکزیمم خروجی نزدیک به 100% را فراهم کند. قابلیت پشتیبانی خطوط ورودی سرعت بالا نیز یک معیار مهم برای سرویسهای مولتی مدیا مثل
ویدئو کنفرانس می باشد. لازم است Self-routing و کنترل توزیع شده در سوییچ های با مقیاس بزرگ پیاده سازی شود.
در این پروژه ابتدا در فصل اول سیستم های سوییچ ATM، اساس کار و ساختارشان شرح داده می شود و سپس سیستم های روتر IP، فانکشنها و ساختار شان بیان می شود و آنگاه معیارهای طراحی سوییچ ها بررسی می گردد. در فصل دوم اساس و مفاهیم سوییچینگ پاکتی را توضیح می دهیم و دسته بندی معماریهای سوییچ را بیان کرده و تکنیک های سوییچینگ مختلفی که در سوییچ های ATM و روترهای ظرفیت بالا بکار گرفته می شوند را از نظر ساختار، مزایا و محدودیت ها مورد بررسی قرار می دهیم. آنگاه Performance سوییچ های اصلی را بصورت محاسبات ریاضی و نتایج شبیه سازی شده نشان می دهیم.
در فصل سوم و چهارم کارهای انجام شده در زمینه شبکه های سوییچ واحدمند مبتنی بر شبکه های کراس بار و clos و کارایی (Performance) آنها بررسی می شود. از این دو روش می توان جهت طراحی سوییچ های واحدمند استفاده نمود.
در فصل پنجم الگوریتم جدیدی جهت تخصیص مسیر به سلول های رسیده در شبکه های سوییچ ATM واحدمند ارائه می کنیم بطوریکه Performance سوییچ را بهبود بخشد و سپس در فصل ششم نتایج شبیه سازی شده این روش با روش استفاده از مسیرهای Random را مقایسه و بهبود چشمگیر عملکرد این روش را نشان می دهیم.
:
واسطه گری به سودآوری از طریق خرید و فروش همزمان یك نوع كالا و یا نوع مشابه آن اطلاق میشود كه در این خرید و فروش میزان سرمایه گذاری خالص صفر است. واسطه گری در صنعت برق كه امروزه در حال تجدیدساختار شدن میباشد، یك ایده جدید به حساب می آید. البته شایان ذكر است كه واسطه گری در سایر بازارها از جمله بازارهای مالی پدیده نوینی نیست. استفاده توسعه یافته از واسطه گری هر گونه فعالیتی كه در جهت خرید یك كالای نسبتا زیر قیمت و فروش كالای مشابه و نسبتاً بالای قیمت برای سودآوری باشد را شامل
میگردد. در این تحقیق ابتدا انواع واسطه گری در كلیه بازارها بصورت كلی تعریف شده و سپس به بحث در مورد انواع واسطه گری در بازارهای برق پرداخته میشود. دو نوع واسطه گری در بازارهای برق مورد توجه قرار میگیرند، واسطه گری بین كالاهای همنوع و واسطه گری بین كالاهای غیر همنوع كه اصطلاحا به آن واسطه گری بین ما بین نیز گفته میشود.
بطور كلی عمل واسطه گری به سه عامل هدفمند بودن، موقعیت مناسب داشتن و روشهای مناسب جهت رسیدن به هدف مورد نظر كه سودآوری می باشد وابسته است. هدف واسطه گری مشخص است، سودآوری بدلیل تفاوت قیمت در تبادلات لحظه ای یا خرید و فروش یك نوع كالا یا كالای از جنس متفاوت. فرصت كسب سود در واسطهگری مربوط به تفاوت در قیمتها بین كالاهای همنوع و مشابه میباشد. نحوه شناخت واسطه گری، خرید و فروش همزمان یك نوع كالا یا مشابه آن نوع كالا میباشد. در تعاریف جدید نیز هدف اصلی كماكان به دست آوردن سود میباشد. اما ممكن است كه بر خلاف تعریف اولیه در این موارد به سرمایه گذاری های اولیه نیز نیاز باشد، البته عامل سودآوری، همانند سابق تفاوت در قیمت كالاها است. بنابراین اصلاحات جدیدی در مورد سه عنصر واسطه گری جهت نشان دادن تعاریف جدیدی از واسطه گری ایجاد شده اند كه در این تحقیق ضمن تعریف این موارد به بررسی مثالهایی كاربردی از واسطه گری در بازارهای برق نیز پرداخته میشود.
مدارهای مجتمع دیجیتال همواره به علت سادگی در طراحی، قابلیت پیاده سازی از یک تکنولوژی قدیمی تر به تکنولوژی جدیدتر، کم نویز بودن و کم مصرف کردن توان نسبت به مدارهای آنالوگ، بیشتر مورد توجه طراحان مدارهای مجتمع، قرار گرفته اند.
در دهه 80 میلادی بیشترین توجه طراحان بر روی مسئله سرعت و مساحت اشغال شده توسط سطح تراشه، متمرکز بود.
اما با پیشرفت تکنولوژی و افزایش تعداد ترانزیستورها در داخل یک تراشه، توان مصرفی توسط ترانزیستورها و در مجموع، توان مصرفی توسط مدارهای مجتمع اهمیت خود را نشان داد و طراحان را وادار نمود تا راهکارهائی جهت کاهش توان مصرفی ارائه دهند.
در این راستا مسائلی از قبیل مخابرات سیار و وسائل الکترونیک قابل حمل، نیز باعث گردیدند تا ضرورت کاهش توان مصرفی بیشتر مورد توجه طراحان و مهندسان قرار گیرد.
فصل اول
کلیات
1-1- اهمیت سرعت و توان مصرفی و سطح اشغال شده در مدارها
پس از به وجود آمدن مدارهای دیجیتال، همواره سه مسئله مهم مدنظر طراحان قرار داشته است، که این سه مسئله مهم عبارتند از:
1- سرعت پاسخگوی مدار به ورودی
2- مساحت اشغال شده روی سطح تراشه
3- توان مصرفی توسط تراشه
براساس نتایج به دست آمده، توان مصرفی تراشه ها در هر 3 سال به 3 سال، 4 برابر شده است و توان مصرفی در بعضی از تراشه ها به 100 وات رسیده است.
به دلیل پیشرفت های انجام شده در فن آوری ساخت مدارهای مجتمع و کوچک شدن ابعاد ترانزیستورها، مساله فضای اشغال شده توسط مدارهای مجتمع تا حدودی کمرنگ و از اهمیت آن کم شده است و مهمترین مسائلی که باقی می مانند، مسئله سرعت و توان مصرفی است که با توجه به کاربرد مدار، هریک از این ویژگی ها می تواند در اولویت طراحی و مدنظر مهندسان طراح قرار گیرد.
2-1- مدارهای دیجیتال و دسته بندی آنها
مدارهای دیجیتال که از ترانزیستورهای MOSFET ساخته می شوند، به دو مقوله وسیع زیر تقسیم می شوند:
1- مدارهای ایستا (استاتیک)
2- مدارهای پویا (دینامیک)
به اختصار می توان بیان نمود که تمامی گره های یک دروازه ایستا مسیری مقاومتی از طریق ترانزیستورها به VDD یا زمین دارند.
اما در مدارهای پویا ولتاژ یک یا چند گره به بار ذخیره شده بر روی یک خازن بستگی دارد. دیگر تمایز این دو مدار، نیاز مدارهای پویا برای درست کار کردن به سیگنال های ساعت متناوب همگاه با سیگنال های داده است.
از مدارهای ایستا می توان به دروازه های CMOS و شبه NMOS اشاره نمود. طراحی گیت های منطقی به روش CMOS بسیار سرراست است، به این صورت که دو ترانزیستور NMOS سری عمل AND منطقی و دو ترانزیستور NMOS موازی عمل OR منطقی را انجام می دهند.
به نحوی مشابه دو ترانزیستور PMOS موازی عمل AND و دو ترانزیستور PMOS سری عمل OR را انجام می دهند. مدارهای حاصل دروازه های NOR دو ورودی و NAND دو ورودی را که در شکل (1-1) نشان داده شده است، تشکیل می دهند.
در روش شبه NMOS، یک ترانزیستور PMOS در مسیر VDD به مدار قرار می گیرد. شکل (2-1) یک گیت NAND دو ورودی شبه NMOS را نشان می دهد.
گیت های استاندارد CMOS نسبت به گیت های مشابه شبه NMOS، توان کمتری را مصرف می کنند؛ اما به علت تعداد زیاد ترانزیستورهای PMOS مورد نیاز و بزرگی ابعاد ترانزیستورهای NMOS برای دستیابی به تاخیرهای صعود، نزول یکسان، مساحت بیشتری اشغال می کنند.
در مدار معکوس کننده استاندارد CMOS معمولا ابعاد ترانزیستور PMOS دو برابر ابعاد ترانزیستور NMOS در نظر گرفته می شود زیرا مقاومت ترانزیستور PMOS در حالت روشن بودن تقریبا دو برابر مقاومت ترانزیستور NMOS در حالت روشن است، اما در گیت های طراحی شده با روش شبه NMOS، برای داشتن خروجی مطلوب؛ ابعاد ترانزیستورها به صورت تناسبی انتخاب می شوند و معمولا ابعاد ترانزیستورهای NMOS، چند برابر ابعاد ترانزیستور PMOS در نظر گرفته می شوند. که متاسفانه این نسبت زمان های صعود و نزول نابرابری را ایجاد می کند.
:
با توجه به مزایای زیاد موجبرها، استفاده از آنها در بسیاری از موارد اجتناب ناپذیر می باشد برای انتشار موج داخل موجبر، باید فركانس موج از فركانس قطع موجبر، بزرگتر باشد، در غیر این صورت موج تزریقی به موجبر به شدت با فاصله تضعیف شده و میرا می شود. چون فركانس قطع به ابعاد مقطعی موجبر وابسته است، ابعاد آن در فركانس های پایین باند مایكروویوكه از پركاربرد ترین رنج های فركانسی می باشد، نسبتا بزرگ خواهد بود. استفاده از مواد متامتریال كه دارای خصوصیات منحصر به فردی می باشند، به موج اجازه انتشار زیر فركانس قطع موجبر خالی به علت پشتیبانی Backward waves ها یا امواج وارونه را خواهد داد، از این ویژگی می توان برای كوچك سازی موجبر استفاده كرد. خصوصیت جالب توجه دیگر متامتریال ها اینست كه ضریب شكستشان می تواند منفی یا نزدیك به صفر شود. طبق قوانین الكترو مغناطیسی، اگر ضریب شكست ماده ای نزدیك به صفر شود، پدیده فوق شكست رخ داده و امواج بازتابشی به جهت بردار نرمال سطح نزدیك شده و باعث متمركز شدن میدان ها شده و خصوصیات تشعشعی بطور موثری بهبود می یابد. بدین منظور ماده متامتریال با ضریب شكست نزدیك به صفر در فركانس مورد نظر به صورت لایه فوقانی در بالای صفحه تشعشعی آنتن قرار گرفته و تاثیر آن در بهره آنتن بررسی خواهد شد.
فصل اول: کلیات
1-1) هدف
با وجود اینكه ساختارهای هدایت كننده صفحه ای در بسیاری از موارد كوچك سازی، جایگزین موجبرهای مستطیلی شده اند، موجبرها هنوز هم دربسیاری از موارد مورد نیاز هستند. موجبرها دارای مزایایی مثل تلفات كمتر و قابلیت انتقال توان بالاتری می باشند. آنتن های
صفحه ای مثل آنتن های پچ، دارای معایبی چون تلفات زیر لایه و تشعشع از منبع تغذیه و پایین بودن میزان غلظت پلاریزاسیون هستند، معایب آنتن های موجبری این است كه ابعادشان در فركانسهای پایین تر، نسبتا بزرگ می باشند، پس ما می خواهیم با استفاده متامتریال ها اندازه این آنتن ها را كوچك كرده و بهره آنها را افزایش دهیم.
از قوانین الكترومغناطیسی می دانیم كه برای انتشار موج داخل یك موجبر باید مقطع طولی موجبر حداقل نصف طول موج عبوری از آن باشد.
روش ابتدایی برای كوچك كردن موجبرها، پر كردن آنها با یك ماده دی الكتریك بود كه منجر به كاهش ابعاد آنها با ضریب 1<εr نسبت به موجبر خالی كوچكتر شد، در اینجا εr ثابت دی الكتریك می باشد. با این وجود موجبرهای پر شده از هوا دارای تلفات كمتری نسبت به موجبرهای معادل پر شده از دی الكتریك می باشند، همچنین بالا بودن ضریب دی الكتریك εr در موجبرهای پر شده، اجازه تشعشع از انتهای باز موجبر را نخواهد داد. از قانون اسنل می دانیم كه اگر ضریب شكست ماده ای صفر یا نزدیك به صفر باشد اگر موجی تحت هر شرایطی به آن ماده بتابد سوی موج خروجی از سطح به جهت بردار نرمال نزدیكتر شده و این بدین معنی است كه میدان های بازتابشی از سطح ماده حالت متمركزتری پیدا كرده و در نتیجه خصوصیات تشعشعی آنتن، بطور موثری بهبود می یابد.