وبلاگ

توضیح وبلاگ من

موضوع: "بدون موضوع"

طراحی ثابت نگهدار ارتفاع پهپاد در مد طولی به روش QFT


پهپاد (U.A.V) نوعی هواپیما اعم از بال ثابت یا بال چرخان می باشد که بدون سرنشین بوده و می توان آن را از دور توسط اپراتور و یا درون خود آن، به صورت از پیش برنامه ریزی شده کنترل و هدایت کرد.
کاربردهای گوناگونی برای پهپاد وجود دارد که اهم آنها عبارتند از:
– اجرای ماموریت های گشت و شناسائی مواضع دشمن.
– هدف مصنوعی برای آزمایش سیستم های پدافند هوائی.
– ایفای نقش موشک های هدایت شونده.
– حمل کننده سیستم های مولد اغتشاشات رادیویی.
– تقویت کننده مخابراتی متحرک.
آزمایشگاه پرنده برای تست انواع زیر سیستم های مورد استفاده در هواپیما.
از مزایای عمده پهپاد در اجرای چنین ماموریت هائی می توان موارد زیر را نام برد:
– عدم حضور خلبان در صحنه عملیات.
– پایین بودن هزینه ساخت.
– اختفا از دید رادار دشمن (به علت ابعاد کوچک و استفاده از بدنه با مواد مرکب).
پهپاد مورد نظر در این پروژه، نوعی پهپاد با بال ثابت است. پهپاد معمولا به دو روش کنترل می شود. در روش اول، فرامین لازم توسط اپراتور زمینی و از طریق یک خط رادیویی به پهپاد ارسال می گردد و اپراتور، کنترل مستقیم پرنده را در دست دارد. در روش دوم سیستم هدایت و ناوبری درون محموله هوایی، فرامین لازم را جهت تعیین مسیر پرواز صادر می نماید. سیستم کنترل خودکار پرواز (AFCS) که خود نیز بخشی دیگر از محموله هوائی می باشد با واسطه شدن بین فرامین صادر شده از طرف اپراتور و یا از طرف سیستم هدایت و ناوبری

دانلود مقالات

 از یک سو و محرک های سطوح کنترل از سوی دیگر، پاسخ های مناسب و مورد نظر را در متغیرهای حرکت هواپیما ایجاد می نماید. در محموله هوائی پهپاد سخت افزار AFCS به صورت دیجیتالی و توسط یک پردازنده اجرا می شود. در کامپیوتر کنترل پرواز اعمالی مانند خواندن سیگنال خروجی سنسورها چه به صورت آنالوگ و چه به صورت دیجیتال، محاسبه الگوریتم کنترل و تولید فرامین مناسب جهت حرکت محرک ها برنامه ریزی می شود. در ضمن عوامل مورد نیاز برای ارسال اطلاعات به ایستگاه زمینی برای رویت خلبان و ذخیره سازی فراهم گردیده است.

2-1) تعریف مسأله
از آنجایی که کنترل هر سیستم نیاز به شناخت آن سیستم دارد، لذا در ابتدا مطالعه در زمینه دینامیک پرواز هواپیما جهت شناخت مدل و یا تابع تبدیل سیستم لازم است، به عبارتی ضروری است که مدلی از سیستم در اختیار داشته باشیم. مدلسازی هر سیستمی در کل به دو صورت قابل حصول است. در روش اول، با استفاده از قوانین حاکم بر فیزیک، سعی بر این است که حتی الامکان روابط اساسی دینامیک سیستم استخراج شده و سپس پارامترهای مجهول چنین روابطی به نحوی محاسبه و اندازه گیری شوند و یا دامنه تغییرات آنها مشخص گردند. در این روش تمام پارامترهای مجهول دارای توصیف و مفهوم فیزیکی خاصی خواهند بود.
روش دوم، مدلسازی به صورت تجربی است که باید با اجرای یک سری آزمایش و ثبت داده های ورودی – خروجی، بهترین مدل دینامیکی ممکن به این دسته برازنده شوند. واضح است که پارامترهای چنین مدلی در حالت کلی فاقد هرگونه مفهوم فیزیکی بوده و این مدل تنها تقریبی از رفتار ورودی – خروجی سیستم واقعی است.
در صنعت هواپیمایی آنچه که امروزه در مدلسازی حرکت هواپیما به صورت جهانی مورد قبول است مدلسازی به روش اول یعنی استخراج معادلات ساختار حالتی پرنده می باشد. چنین مدلسازی احتیاج به دانش آیرودینامیک و جلوبرنده ها و سازه هواپیما دارد. به طور کلی معادلات دینامیکی هواپیما با فرض اختلالات و آشفتگی های کوچک حول شرایط پرواز تریم (اندازه شتاب های خطی و زاویه ای تعادل صفر باشد) به دو دسته معادلات طولی و معادلات افقی – جهتی که کاملا مستقل و دکوپله از یکدیگر اند تقسیم می شوند و از آنجایی که در این پروژه هدف ثابت نگه داشتن هواپیما در ارتفاع مورد نظر خلبان می باشد لذا توجه خود را معطوف به معادلات طولی هواپیما می کنیم.
نشان داده شده است که معادلات حرکت هر هواپیما به صورت یک دستگاه معادلات دیفرانسیل غیرخطی و تغییرپذیر با زمان قابل بیان می باشد [ضمیمه الف]. برای هر هواپیما پوش پرواز به صورت یک ناحیه بسته در صفحه ارتفاع – سرعت هوا تعریف می گردد که هواپیما تنها قادر به پرواز درون این ناحیه بسته می باشد. با فرض آشفتگی های کوچک، خطی سازی معادلات حرکت در یک شرایط پرواز خاص درون پوش پرواز منجر به یک دستگاه معادلات دیفرانسیل خطی تغییرناپذیر با زمان خواهد شد. با توجه به امکان پرواز در شرایط پرواز مختلف، پارامترهای چنین معادلات حرکت خطی شده ای در محدوده معینی در تغییر خواهند بود، لذا با مساله عدم قطعیت پارامتریک یا ساختار یافته ای مواجه هستیم که در ضمن کراندار نیز می باشد و یک طراحی عملی باید پایداری و کارآیی خاص مورد نظر را به ازای این عدم قطعیت کراندار تامین نماید. بدون احتساب فرض آشفتگی های کوچک، معادلات حرکت در شکل غیرخطی و پیچیده خود باقی خواهند ماند. با توجه به ماموریت پهپاد مورد نظر فرض آشفتگی کوچک فرض معقولی برای ساده سازی مساله خواهد بود.

آنالیز آنتن های شکافی تیپر شده به روش TLM


آنتن های شكافی به تدریج بازشونده در سال 1979 برای اولین بار توسط گیبسون (Gibson) معرفی شدند. در آن زمان امكانی برای آنالیز این آنتن ها وجود نداشت و این بدان علت است كه روش های عددی محاسبه گرهای با حافظه و سرعت بالا نیاز دارند. محققان مختلف آزمایشات زیادی را انجام داده اند كه نتایج نشان داده است. آنتن های شكاف دار به تدریج بازشونده دارای پهنای باند وسیع هستند. ساختمان مسطح و كوچك این آنتن ها اجازه می دهد كه به راحتی در ساختن آنتن های مجتمع مورد استفاده قرار گیرند و طراحی آرایه های آنتنی را به صورت ساده میسر می سازند.
این نوع آنتن ها در دهه اخیر توسط روش ممان با تقریب بالا آنالیز شده است. روش ممان با اینكه قادر نبود آنتن را بطور دقیق آنالیز كند، به محاسبات پیچیده نیز نیازمند است اما اینك ما از روش TLM (Transmission Line Matrix استفاده كرده ایم كه محاسبات آن از سادگی قابل توجهی برخوردار است و شبیه سازی بدون تقریب انجام می شود و از معایب این روش می توان به عدم سادگی مدل كردن و نیاز داشتن به پردازش گر با سرعت و حافظه بالا اشاره كرد كه باتوجه به رایانه های موجود این مورد نیز قابل صرفنظر كردن است.
پایه روش TLM تئوری انتشار ه ایگنس و ابزار آن مدارات الكتریكی است كه این ابزار برای مهندسین رشته برق شناخته شده است.
روش TLM كه بطور مفصل تشریح خواهد شد می تواند برای مدل كردن اكثر مسائل الكترومغناطیس بكار رود.
این جزوه شامل پنج فصل به شرح زیر و یك خلاصه به زبان انگلیسی است.
فصل اول: در این فصل اهداف و پیشینة تحقیق، تئوری انتشار هایگنس و شباهت مدارات الكتریكی به پدیده های فیزیكی عنوان شده است.

پایان نامه های دانشگاهی

 

فصل دوم: خطوط انتقال كه ابزار اصلی شبیه سازی به روش TLM می باشد در این فصل تشریح شده است.
فصل سوم: مدل گسسته المان های فیزیكی مورد لزوم تشریح شد ه و مثالی برای محاسبه به روش گسسته جهت مشخص كردن میزان خطا نسبت به شرایط مسئله و مدل آن عنوان شده است.
فصل چهارم: در این فصل در بخش اول روش TLM به صورت یك بعدی تشریح شده است و خواننده را برای مطالعه شبیه سازی دوبعدی و سه بعدی آماده می كند.
در بخش دوم این فصل روش TLM به صورت دوبعدی تشریح شده كه شامل، ماتریس اسكترینگ برای محیط های مختلف، مرزهای جاذب و هادی و معادلات لازم برای انواع پورت های در زمان های مختلف است.
در بخش سوم این فصل روش سه بعدی TLM تشریح شده كه شامل، گره جونز (Johns) و ماتریس اسكترینگ برای مدل های مختلف است و در اصل توسعه روش دوبعدی می باشد.
فصل پنجم: این فصل شامل تشریح آنتن های شكافی به تدریج بازشونده، نحوه مدل كردن آنتن های شكافی به تدریج بازشونده خطی به روش TLM، نحوه كاربرد نرم افزار نوشته شده، خروج نرم افزار برای ابعاد مختلف آنتن مورد بحث، است.

طراحی و شبیه سازی فیلترها و میکسرهای مایکروویو نوری


فیلترهای مایکروویو فوتونیک با مزایای خوبی مثل عرض باند وسیع، تلفات کم و ایمنی در مقابل تداخل الکترومغناطیسی توجه زیادی را جلب کرده اند. از طرف دیگر در سیستم های ارتباط نوری، لینک های رادیویی روی فیبر (RoF) یکی از پرکاربردترین مباحث در شبکه های بی سیم باند پهن، شبکه های سنسوری، سیستم های ارتباط ماهواره ای و رادار می باشند که در چند سال اخیر توجه ویژه ای را به خود جلب کرده اند. وظیفه اصلی یک شبکه RoF توزیع سیگنال های میلیمتری و مایکروویوی روی فیبر نوری برای به دست آوردن امتیازاتی از قبیل تلفات کم، پراش کم و پهنای باند بالای سیگنال های فیبر نوری است. سیگنال های توزیع یافته می توانند به طور مستقیم در لینک های فیبر نوری یا RoF به کار روند، بدون اینکه احتیاجی به تبدیلات الکتریکی به نوری و یا نوری به الکتریکی باشد. در چندین سال اخیر شیوه های متفاوتی جهت ضرب در حوزه نور و یا فیلترینگ میان گذر پیشنهاد شده اند، ولی استفاده همزمان از ضرب در حوزه نور و فیلترینگ میان گذر کمتر مورد بحث قرار گرفته است.
فصل اول: کلیات

1-1- هدف

 

پایان نامه های دانشگاهی

 

یکی از اهداف این پروژه استفاده همزمان از ضرب در حوزه نور و فیلترینگ میان گذر است. قطعات اصلی که در این مورد استفاده می شوند عبارتند از: مدوله کننده شدت، مدوله کننده فاز و یک قطعه فیبر تک مد. دو مدوله کننده جهت ضرب در حوزه نور به کار می روند. سیگنال خروجی از ضرب کننده ها وارد فیبر تک مد که نقش المان پراش دهنده را به عهده دارد می شود. از ترکیب مدوله کننده، لیزرهای قابل تنظیم و فیبر تک مد فیلتر میان گذر به دست می آید، که این فیلتر می تواند باند عبوری متناسب با فرکانس های مبدل کاهش دهنده فرکانس یا مبدل افزایش دهنده فرکانس داشته باشد. اجزاء فرکانسی اضافی پس از فیلترینگ حذف می شود. بدین منظور در این پروژه ساختار فیلترهای مایکروویو و روش تولید موج میلیمتری ارائه و مورد توجه قرار می گیرد که در این راستا از مدوله کننده های شدت و فاز استفاده و نتایج آنها باهم مقایسه خواهد شد. حذف حامل های نوری یکی از موضوعات جالب در سیستم های ارتباط نوری است. به همین دلیل روش های مختلف حذف حامل های نوری نیز مورد بررسی قرار می گیرد. سعی بر این است تا میزان حذف حامل های نوری افزایش یابد. در این پروژه اثرات پراکندگی رنگی فیبر تک مد که یک عامل محدود کننده برای مسافت های زیاد است روی سیگنال بررسی می گردد. نتایج حاصل از این پروژه داشتن فیلترهایی با باند عبور صاف تر و تضعیف بیشتر در خارج باند و نیز استفاده از پارامترهای مناسب و نیز ساختاری با قابلیت تنظیم است.

مبدل های آنالوگ به دیجیتال کم توان و سریع و با دقت بالا

:
مبدل خط لوله از چند طبقه تشكیل شده است كه هر طبقه یك یا چند بیت خروجی را فراهم می كند. مفهوم این مبدل به این صورت است كه طبقه اول از ورودی نمونه برداری می كند و آن را به دو بخش تبدیل می كند: یك بخش دیجیتال و دیگری سیگنال باقیمانده. سیگنال باقیمانده در هر طبقه، اختلاف بین سیگنال ورودی و بیت های دیجیتالی تبدیل یافته است. طبقه اول پس از انجام عمل تبدیل، آن را به طبقه بعدی می فرستد و از سیگنال بعدی نمونه برداری می كند. هر طبقه m بیت دیجیتالی تولید می كند و یك مبدل دیجیتال به آنالوگ ضرب كننده دارد كه شامل یك DAC، تفریق كننده، تقویت كننده و مدار نمونه بردار و نگهدار است. نوعا MDAC متشكل از یك تقویت كننده با سرعت و بهره بالا به همراه تعدادی خازن و كلید است.

بنابراین در ابتدا با توجه به مشخصات سرعت و دقت مبدل، نیاز به طراحی یك تقویت كننده توان بهینه برای بلوك MDAC است. پس از تقویت كننده، مقایسه گر نقش مهمی در تلفات توان در مبدل خط لوله دارد. برای اینكه مقایسه گر آفست كمی داشته باشد، نیاز به مقدار

دانلود مقالات

 مشخصی انرژی دارد. آفست كم مقایسه گر باعث افزایش توان سیگنال به نویز (SNR)، سوئینگ ورودی و قابلیت تفكیك می گردد. به منظور داشتن ولتاژ آفست كوچكتر در مقایسه گرها، از یك پیش تقویت كننده استفاده می شود. اشكال عمده این روش این است كه توان بالایی به صورت ثابت توسط پیش تقویت كننده مصرف می شود. برای غلبه بر این مشكل از مقایسه گرهای دینامیكی كه توان مصرفی بسیار كمتری دارند استفاده می شود. این مقایسه گرها در هر پالس ساعت یك مقایسه انجام می دهند.

مشكل عمده مقایسه گرهای دینامیكی، بالا بودن آفست در آن ها است كه در مبدل های خط لوله توسط مدار تصحیح خطای دیجیتالی مرتفع می گردد. این كار به بهای افزایش توان مصرفی و كاهش نسبت سیگنال به نویز تمام می شود. بنابراین نیاز به طراحی یك مقایسه گر دینامیكی با آفست كم وجود دارد. پس از طراحی دو بخش عمده مبدل یعنی تقویت كننده و مقایسه گر، باید به سراغ بهینه سازی توان كل برای آن رفت، كه با در نظر گرفتن توان مصرفی مورد نیاز هر بلوك و با توجه به تعداد بیت ها انجام می پذیرد. مقایسه ساختارهای مختلف آپ امپ نشان می دهد كه ساختار بهینه تقویت كننده وابسته به بهره حلقه بسته مطلوب است.
در مبدل های خط لوله برای ساخت پالس ساعت تمیز از اشمیت تریگر استفاده می شود، زیرا اشمیت تریگر نویز را فیلتر نموده و یك سیگنال دیجیتالی تمیز به دست می دهد. یك روش ساخت اشمیت تریگر، استفاده از معكوس كننده های CMOS با فیدبك مثبت است (مانند لچ).

ارزیابی عملکرد سیستم های کنترل فرآیندی در مقیاس بزرگ صنعتی


در سال های گذشته تلاش های زیادی جهت مدرن کردن سیستم های کنترلی صورت گرفته است. تجهیزات کنترلی مدرن مانند سیستم های کنترل توزیع یافته (DCS)، کنترل کننده های منطقی برنامه پذیر (PLC)، شبکه ها و تجهیزات هوشمند در کنار نرم افزارهای قدرتمند به کار گرفته شدند. مهمترین بخش های سیستم کنترلی را لایه ترانسمیترها و محرک ها (لایه اول) و لایه کنترل کننده های تنظیمی که معمولا PID کنترل کننده ها می باشند (لایه دوم)، تشکیل می دهند. ترکیب این دو لایه با یکدیگر همان مفهوم حلقه های کنترلی را در بردارد. نقش حلقه های کنترلی در صنایع فرآیندی تنظیم متغیر خروجی پروسه (process variable) به مقدار خروجی مطلوب (set

دانلود مقالات

 point) در حضور اغتشاشات و نوسانات می باشد. مقدار خروجی مطلوب مقداری است که فرآیند بیشترین بازده را در آن نقاط خواهد داشت. با سرمایه گذاری فراوان و مدرن شدن سیستم های کنترلی، این سیستم ها نسبت به گذشته نقش موثرتری را در صنایع فرآیندی بر عهده دارند در چنین شرایطی عملکرد و بازده این سیستم ها تاثیر فراوان بر عملکرد فرآیند خواهد داشت. بدین ترتیب ارزیابی عملکرد سیستم های کنترلی به عنوان موضوعی مهم و جدید در صنایع فرآیندی ظهور یافت. ارزیابی عملکرد حلقه ای کنترلی بخش مهمی از موضوع ارزیابی و مونیتوریتگ سیستم های کنترلی در صنایع فرآیندی می باشد. در فصل اول کلیات پروژه ارائه شده است. فصل دوم به ارزیابی عملکرد حلقه های کنترلی اختصاص یافته است. در این فصل ابتدا مشکلات حلقه ها مطرح شده و سپس معیارهای ارزیابی عملکرد حلقه ها مورد بررسی قرار گرفته است. در پایان این فصل نوسان و تداخل بین حلقه ها به عنوان دو مشکل مهم در حلقه ها مورد بررسی قرار گرفته است. فصل سوم به یکی از مهمترین اجزاء حلقه کنترلی یعنی شیرهای کنترلی اختصاص یافته است. در فصل چهارم واحد جداسازی بوتان به عنوان واحد نمونه صنعتی انتخاب و پس از شبیه سازی این واحد در محیط Aspen، حلقه های آن توسط برنامه نوشته شده در محیط Matlab مورد ارزیابی قرار گرفته است. مدیریت آلارم ها به عنوان یکی از موضوعات مهم در سیستم های کنترلی در فصل پنجم بررسی شده است.فصل ششم به نتیجه گیری و ارائه پیشنهادات اختصاص یافته است.

 
مداحی های محرم